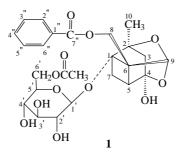
A New Monoterpene Glycoside from Paeonia veitchii


Shao Hua WU, Xiao Dong LUO, Yun Bao MA, Xiao Jiang HAO, Da Gang WU*

Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract: A new monoterpene glycoside, acetoxypaeoniflorin, was isolated from the root cortex of *Paeonia veitchii* Lynch. The structure was elucidated by spectral methods.

Keywords: Paeonia veitchii Lynch., Paeoniaceae, monoterpene glycoside, acetoxypaeoniflorin.

The root cortex of *Paeonia veitchii* Lynch. is one of the most important crude drugs in Chinese traditional medicine. It is used as an analgesic, sedative, anti-inflammatory agent and a remedy for cardiovascular, extravasated blood¹. The present paper deals with the structural elucidation of a new compound from this material.

Compound 1, obtained as viscous oil, gave a quasi-molecular ion peak at m/z 521 [M-1]⁻ in the negative FAB-MS, which was 42 amu greater than that of paeoniflorin. Its ¹H and ¹³C NMR spectra were analogous to those of paeoniflorin^{2, 3}, except for the additional methyl protons at $\delta_{\rm H}$ 1.99 (3H, *s*) in the ¹H NMR spectrum, corresponding to the signal at $\delta_{\rm C}$ 20.9 (CH₃), and the additional carboxylic carbon at $\delta_{\rm C}$ 170.8 in the ¹³C NMR spectrum. The HMBC spectrum showed the cross-peaks from the methyl protons ($\delta_{\rm H}$ 1.99) to the carboxylic carbon ($\delta_{\rm C}$ 170.8), indicating the presence of an acetoxyl group in 1, which was different from paeoniflorin. The long-range couplings were also observed for H-6' [$\delta_{\rm H}$ 4.63 (1H, *dd*, *J* = 10.8, 6.5 Hz), 4.92 (1H, *d*, *J* = 10.8 Hz)] to the carboxylic carbon ($\delta_{\rm C}$ 170.8), and for H-8 [$\delta_{\rm H}$ 5.06 (1H, *d*, *J* = 12.4 Hz), 5.20 (1H, *d*, *J* = 12.4 Hz)] to C-1 [$\delta_{\rm C}$ 89.1 (quaternary carbon)], C-5 [$\delta_{\rm C}$ 44.1 (CH)], C-6 [$\delta_{\rm C}$ 71.6 (quaternary carbon)], C-9 [$\delta_{\rm C}$ 101.8 (CH)], and C-7" [$\delta_{\rm C}$ 166.8 (quaternary carbon)]. Thus, the acetoxyl group was attached to the C-6' of the glucose, and the structure of

compound 1 was accordingly determined as acetoxypaeoniflorin.

Table 1	The ¹ H- ¹ H COSY, HMQC, HMBC correlations of compound 1
	$(400 \text{ MHz}, \text{ in pyridine-}d_5)$

position	$\delta_{ m H}$	δ_{C}	¹ H- ¹ H COSY	HMBC
1		89.1 s		H-7, 8, 10, 1'
2		86.2 s		H-3, 7, 9, 10
3	2.37 (1H, d, 12.3)	45.0 t		H-5, 10
	2.58 (1H, d, 12.3)			
4		106.1 s		H-3, 5, 7, 9
5	3.10 (1H, d, 6.6)	44.1 d	H-7	H-7, 8
6		71.6 s		H-5, 7, 8, 9
7	2.26 (1H, d, 10.8)	23.3 t	H-5, H-7α/7β	
	2.85 (1H, dd, 10.8, 6.9)			
8	5.06 (1H, d, 12.4)	61.5 t	H-8a/8b	H-5, 9
	5.20 (1H, d, 12.4)			
9	5.93 (1H, s)	101.8 d		H-8
10	1.66 (3H, s)	19.9 q		H-3
1'	5.08 (1H, d, 8.4)	100.4 d	H-2'	H-2', 5'
2'	3.98 (1H, t, 8.4)	75.0 d	H-1', 3'	H-1', 3'
3'	4.15 (1H, t, 8.4)	78.3 d	H-2', 4'	H-2', 4'
4'	3.95 (1H, overlap)	71.7 d	H-3', 5'	H-3', 5'
5'	3.93 (1H, overlap)	75.2 d	H-4', 6'	H-4', 6'
6'	4.63 (1H, dd, 10.8, 6.5)	64.7 t	H-5'	H-4',5', C <u>H</u> 3COO
	4.92 (1H, d, 10.8)			
1"		130.8 s		H-2", 6"
2", 6"	8.10 (2H, d, 7.8)	130.0 d	H-3", 5"	H-3", 4", 5"
3", 5"	7.30 (2H, t, 7.8)	128.9 d	H-2", 4", 6"	H-2", 4", 6"
4"	7.47 (1H, t, 7.8)	133.5 d	H-3", 5"	H-2", 3", 5", 6"
7''	7"			H-8, 2", 6"
CH ₃ COO		170.8 s		H-6', C <u>H</u> 3COO
<u>C</u> H ₃ COO	1.99 (3H, s)	20.9 q		

Compound 1, $[\alpha]_{D}^{22}$ -9.78 (*c* 0.46, CH₃OH); UV (MeOH) λ_{max} (log ε) 202.0 (4.15), 228.5 (4.04), 273.0 (2.54) nm; IR (KBr) *v* 3425, 2923, 1718, 1599, 1450, 1345, 1314, 1277, 1178, 1075, 1008, 943, 823, 754, 713 cm⁻¹; ¹H and ¹³C NMR spectral data, see **Table 1**; negative FAB-MS m/z (%): 521 [M-1]⁻ (20), 491 (5), 387 (5), 121 (100), 77 (6).

Acknowledgment

The authors are grateful for the financial support from the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences.

References

- 1. C. Y. Wu, *Outline of New China Herbals*, Shanghai Science and Technology Press, Shanghai, **1990**, *Tom. I*, p. 210.
- 2. H. C. Lin, H. Y. Ding, T. S. Wu, P. L. Wu, Phytochemistry, 1996, 41, 237.
- 3. J. Lemmich, *Phytochemnistry*, **1996**, *41*, 1337.

Received 17 August, 2001